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ABSTRACT

" "A new implicit, iterative method of solving the
Parabolited Navier-Stoken (PNS) Equations claims to overcome the
ellipt.;.c character of the embedded subsonic sublayer by
explicitly introducing pressure as an additional state variable.
The Bhutta-Lewis approach makes no sublayer pressure assumptions.
The validity and basis of that method is explored in this thesis
by examining the relevant eigenvalues governing marching
stability. An original code was also developed in order to
examine the numerical character of the marching, iterative
solutions as they develop. Test cases were carried out for a two
dimensional wedge configuration at Mach numbers 3 and 15 and
Reynolds numbers ranging from 4xl' to( ' 1xI at the initial data
plane. 4 .

An eigenvalue analysis disclosed that the method in
unstable in subsonic regiorn.>' Introducing the additional state
variable does not change the character of the equations.

SReuults for the test cases confirmed the presence of
instability. Classic departure behavior was produced in tightly
clustered grids and convergence to separated flow was shown in
less clustered grids. Marching was achieved only in relatively
high Reynolds number flow with a large stable marching atep size.(7..sP/
Uniform step size was used in this study, but it is possible that I
variable step sizes allowed Bhutta and Lewis to march
successfully; however, no discussion of the step size variation
and its relationship to stability appeared in their original
work.

Thesis Advisor: Dr. Judson R. Baron
Title: Professor of Aeronautics and Astronautics
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Shutta and Lewisl have proposed a new and strikingly

different method of solving the Parabolized Havier-Stokem (PHS)

equations. This now method claims greater accuracy for the name

computing time. In essence, the original idea behind the new

scheme Is to solve the normal system of non-linear partial

differential equations with the equation of state included an an

additional equation and pressure an an additional state variable.

The entire method will be reconstructed and reexamined in

detail here. The primary focus will be on the classical

substitution for pressure In the momentum and energy equations,

and the pressure role in Reference I where it is kept separate in

the state equation. Specifically, a conventional two-dimensional

state vector of the forms

in augmented in the new PNS scheme' and appears an

(T)

Althougih equations and unkownI consistently increase by

one, two of the resulting state elements are equivalent according

to the state equit.kon. The equation system is of a mixed

differential/algebraic type. Moreover, Bhutta and Lewis

10



explicitly rule out the need for a sublayer assumption. Previous

P1S coeza have introduced pressure assumptions in the subsonic

portion of the boundary layer in order to eliminate elliptical

constraints on marc)hing downstream and the development of

departure solutions.

The P1S Equations were developed to save on the large

storage requirements needed for the full Havier-Stokem equations.

Their development arose from the need to solve large numbers of

problems where viscous contributions are dominant in the

direction normal to the streamwise direction. In other words,

flow, that are boundary-layer-like are suitable to be solved by

the PHS equations. This includes a large class of high speed

flows which are of current interest.

Previous PNS codes have used some sort of sublayer

pressure assumption to enable a marching solution in the

streamwise direction. Lin and Rubin" have used pressure from

experiments and have set the subsonic streamwiue pressure

derivative equal to the derivative at the edge of the subsonic

layer. Luburd and Helliwell', 34 use a backward difference for

the streamwise pressure derivative. Vigneron et a13 -1 treated

the pressure derivative exactly in the supersonic region defined

by

H' > 11(2-7)

For other Mach numbers the pressure derivative Is suppressed by

the factor

I1



Schiff and Stegera specified the subsonic pressure to be equal to

pressure at the bottom of the supersonic region. Kaul'4 uses a

global relaxation over the entire domain while still maintaining

the marching scheme. Lighthtlll 3 in 1953 found that departure,

or separation-like solutions, are observed in the boundary layer

equations when the *treamwiwe pressure gradient is not specified.

Similar behavior has been investigated in the PHS equations by

Barnett.*

N>I

M 1

Figure 1.1 Supersonic Velocity Profile

Since the flow within some region near a surface is

always subsonic (Fig. 1.1) and hence elliptic, those assumptions

have been required to change the physical description from a

mixed hyperbolic/elliptic to hyperbolic character. Reference 1

on the other hand, claims that without changing the description

of the physical nature of the flowfield, i.e., without sublayer

assumptions, the code can be marched in hyperbolic fashion.

Justification rests there upon a stability analysis which is

12



based on a'modified state equation. Further analysis will also

be presented in the stability chapter of this thesil.

Although cast in the framework of a PNS problem, the

implications of much modification of an equation system to

achieve atable marching would impact in many areas besides fluid

dynamics. Being able to mathematically change the character of a

system of equations without changing the phymical, aspects of

particular problems would benefit most if not all-of the physical

sciences with promises of greater accuracy and efficiency of

solutions. It is therefore of some importance to rigorously

examine the suggested new method.

13



2.0 PROBLEN DESCRIPTION

In reproducing the new PNS scheme, the emphasis here is

on the role of the individual procedural components of the

algorithm: normalization, initial conditions, step size,

iterative technique, matrix formulation=, smoothing, etc. and how

these relate to convergence and marching. This study is

concerned more with the evolving solution rather than the speed,

accuracy, or efficiency of the scheme.

In order to understand how the method works, the first

objective of this thesis was to devise a faithful code which
would provide sample calculations for a simple but meaningful

physical problem. A wedge flow at M-3 and 15 and Reynolds

numbers ranging from 4x104 to 1x137 are used. The second purpose

involves stability questionsa." 1 3. 14, 1 and includes eigenvalue

analyses of a previcusa scheme and the new PNS scheme, as well as

researching the behavior of systems of partial differential

equations.

2.1 PROBLEM AS TESTED

Reference 1 used the new PNS scheme on a blunt body at

Mach 25 at Reynolds numbers of 2.92x103 and 1.72x103 based on

nose radius. The reason for these values was to test the scheme

at high velocities and low Reynolds Number with large viscous

14



effects, where conventional PNS schemes break down.

Since the current study is concerned primarily with the

validity of the concept in question, it uses a simpler problems

a simple wedge flying at Mach 3 and 15 and Reynolds numbers from

4x1Oa to lxlO'. neynalds number can b4 varied to simulate more or

less viscous conditions.

The figure below shows the coordinate system of the wedge

and Table 2.1 shows the freestream conditions.

z

Sa..wedge angle

S- shock angle

Figure 2.1 Wedge Coordinate System

15



FREESTREAM VALUES" 80,000 FEET

DENSITY 8.6 x 10-Q SL/FT

PRESSURE 58.125 LB/FT&

TEMPERATURE 389.99 OR

SONIC SPEED 977.6 FT/SEC

VISCOSITY 9.7 x 10-9 SL/FTSEC

Table 2.1 Frecutream Values

1
I•

It
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3.0 CONSERVATION EQUATIONS

As the name suggests, the Parabolized Navier-Stokes

Equations are derived from the full Navier-Stokes Equations. In

a somewhat similar approximation an for the boundary layer

equations, only some of the viacous terms are retained. The PHS

system in applicable to supersonic flow and, since it is valid in

both the viscous and inviscid portions of the flow, the

interaction betwieen such rWegons in included automatically. 3

In a normal supersonic viscous flow, the no-slip

condition at the surface implies that the boundary layer in at

some point subsonic and transitions to supersonic flow within the

boundary layer (Figure 1.1).

A consequence of this subsonic sublayer is that the

atreamwise flow is elliptic despite the outer supersonic flow and

the solution cannot be marched downstream in a hyperbolic/

parabolic famhion. The constraint introduced by sublayer

assumptions is control of the upstream communication of pressure

disturbances through the subsonic region. By making appropriate

presmure assumptions, much an constant pressure across thw

muLlayer, the solution can be marched in the mtreamwime

direction. This has been demonstrated in a number of previous

PNS schemes.,a,, 914

17



The novelty of the current method in that no such

assumption is made. The claim is that by treating the equation

of state am a meparate but coupled equation, the elliptic nature

of the problem im circumvented. Although no asaumptions may wnean

greater accuracy, it in necesmary to demonstrate that the state

equation treatment somehow alters the character of the equation

mystem. This point vwil be conmsidered further.

3.1 1gAIXON

In two dimenmion., the Navier-Stokes Equations in vector

form appear an:

q,D + CEi - Ev],g * (Gi - Gv],Z - H a 0 3.1

where q is the state vector, the comma indicates partial

differentiation and E and G are the X and Z flux vectors. The i

and v refer to inviacid and viscous and all variables are

dimensional. The vector H contains the state equation.

The X and Z direction. correspond to the components along

and normal to the wedge surface of the current problem (Fig.

2.1).

I8



lore:

qS 3.2

AST

p
P is the extra state variable corresponding to the added equation

of utat.e. The density-teimperature product has been used hors for

conmistency with the convention in Reference 1.

The derivation of PNS equations Involvem an order of

magnitude analysis, much like the boundary layer equations. The

most common form (Lubard and Hellivell, 1973, 3974)3 im obtained

by asmuming steady flow and that the utreauvime viscous

derivative terms are negligible compared to the normal (and

transverse, If 3-D) viscous derivative terms. In other words,

the PNS equations are derived mimply by dropping all vimcoum

terms containing partial derivatives with rempect to the

utreamwiue direction. With thin in mind, it is rather simple to

reduce equations 3.1 to PNS form:

Ei,u * Gix - Gv,z + H 3.3

The state vector remains the mame am in equation 3.2.

Since the equation of state in a meparate equation and in

algebraic in form, it is the mole contributor to the meparate

vector, H.



The ±rndivIdual flux veators area

ELPU * pa

%T/(T-1 VO/2)pu

where VO us va

(T/(7-i) *VO/2)om

0

3.4

0

02



0

0

HR 0

0

P -ART

The above flux veators remain dimensional.

3.2 KQFKSXONALh ZATZOK

Follovwing the convention of Referenoe 1, the non-

dimensional variables become:

u a u' /a's (' now indicates a dimensional quantity)

v - ii' $a's

T T T' /T'm

p p' / (es

X * X' /L'

Z * Z' /L'

When these definitions are substituted into the dimenalonal

equations 3.4, the result is the nondimensional PNS equationst

Ei., * Gi:, " EGvp2 * H 3.5

21



The nondimenmional state equation contained in the H vector in

,p a OT. Unless stated otherwise, all

equations and parameters henceforth will be non-dimensionul.

The fact'r E results from the normalization process and

in defined an

G a Ne/ReL 3.6

ReL ti the Reynolds number based on the rmference length, L'.

Rft * (PmueL#*a)' 3.7

For the viscous wedge flow in this study a characteriatic

scale ,srametve im implied by the boundary layer duplacement

thicknesm, V. In dimensional form2

V" I (1. 7208) X4/ (R*#.) ae I.a

Squaring both sides, multiplying both sides by X'/(L' ) and

mimplifying given (in nondimenmional form)

(61)0 a (2.96)X/ReL

L' im the reference length Qnomen to be the wedge surface

location at which Xu(X'/L' )-l, so that Re. follows from:

22



Reia2.96g/CW*)* 3.9

6" in the nondimensionai boundary layer displacement thickness at

Xul. This in estimated by knowing the boundary layer thicknems

at the starting point. It the starting plane to at Xnl there in

coorresponding Reot and L' for any choice of 6" and vice versa.

for example, at NH a 3 and vith a 7- (half angle) wedge, the

shock angle is about 240. Prom Figure 2.1, with X a 1,

Zatan(uhock angle - wedge ingle) or Z a tan (240 - 70) f 0.3.

Assuming a boundary layer that occupies IOX of the shook layer,

its thickness will be about 0.03 and a reasonable approximation

for 6" might be 0.01. Using 3.9a

Ret. 2.96 x 106

and using 3.7

L' 3.45 x 10-1 ft 3.10

Of course increasing or decreasing the boundary layer thicknesm

will result in changes in the estimate af 6" and the viscous

nature of the problem for the corresponding smaller or larger

Reynolds number.

23



3.3 GENERAL COORDINATE TRANSFORtATIO1

The PHS equations in the form of 3.5 are appropriate if

the grid in everywhere orthogonal and rectangular.

Unfortunately, a match of grid with the wedge and shock

boundaries requires a transformation. Nor& generally the

equations must be prepared to allow a general coordinate

transformation from a nonorthogonal physical plane to an
orthogonal computational plane. The detail. of a specific grid

transformation for the vedge will be explained in Chapter 4; the

general transformation of the PNS equations will be discussed

here.

In essence, the goal in to relate the non-orthogonal XZ

system to an orthogonal f, 4 system. We

take f as the streamvise direction, and C as

the crosf low direction. To begin, start again with the full

non-dimensional steady Havior-Stokes equations:

(Ei - EEvJ,, + CGi - EGv),a - H 0 0 3.11

To transform to the 9, 4 system, the

derivatives (,X) and (,Z) must be changed to a combination of the

derivatives (,f) and (,C). By the chain

rule,

24



(,X) = (t, x) , ) + (4, )(,)
" " # VC, ) + 6(,G) 3.12

(,Z) " G V +,) (, )

This assumes a most general transformation of the form:

it - (X, Z)

(X, Z)

Nov use 3.12 in 3.11 to get

C# 1 {Ei-EGi) + t, (Ev-EGv)3,

+ Cr {Ei-EGi) + Q {Ev-EGv]),4 .0 3.13

In keeping with the assumptions to derive the PHS

equations from the Navier-Stokes Equations, the streamwise

viscous derivatives are omitted, which leaves:

I N ( Ei-EGi60)], #

+ [fx{Ei-GGi) + C.(Ev-EGv)},4 3.13a

The Ev and Gv viscous vectors contain X and Z derivatives which

must also be transformed to f and 4. The

entire derivation may be found in Appendix A. The transformed

PNS equations become:

F&, f F-,a l eS,C + H 3.14

Here the notation is different to emphasize that the

transformation has been completed and H i1 still the vector

25



containing the equaticn of state terms. .-'he H vector iu not

transformed because of its algebraic nature. Other vectors are:

Pus

puU1 + f4x p

F, * (l/J) RVU , + ?Ip

(T/ (7-1) +V /2)W U,

0

Fa (1/J) pvUa + & p 3.15

0

0

Ma u,C + (CNx u, 4+÷MxzwV)/ 3

S (pI/J) MaW, 4 + (MNxu,+Mzaw,w)/3

Me (T,4/(Pr(7-1) )+uu,4+ww,9)
+ (MI uu, 4+MI 1 vv, 4

+M% a (vwu, 
4÷uw, 4) )/3,

1 0

And: U1  a #,u + 92w

U& "M u + 41w

z = •2

26



Ma. 0 Mx + Mix
Va - UO + we •

J = Transformation Jacobian defined in Eq. (4.7)

The Jacobian is included to make the entire transformation

conservative.3 This will be seen more clearly in Chapter 4.

Equations 3.14 are to be so.'.ved. However, in preparation

for a later stability analysis, a differential version of the

equation,of state introduced in Reference I must be noted:

0 P I+P, ) OP T

Here S is a *small" number. With this version of the equation of

state the final versions of F, and Fe become:

F, = (1/J) OwU, + 92zp

(T/ (7-1) V* /2) JA,

ep

/ :3.16

puUM. . p

F. e (j/J) a+U. ÷ p

(T/ (Y- 1) +Va /2) FUa

Sp
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4.0 GRID AND GEOMETRY ANALYSIS

The viscous wedge problem clearly involves a boundary

layer. The presence of viscosity implies that the location of

the shock is unknown beforehand, unlike the invisoidproblem."

The shock locus is found as the solution is marched along the

wedge. For a shock fitting approach, the shock serves Sm the

upper boundary of the described domain. A convenient grid is one

that conforms to the phycical boundaries.

In order to solve the flow field numerically consider a

rectangular grid in a computational plane. The relationship, or

transformation, between the physical plane and the coNputational

plane provides the metrics that were developed in Chapter 3.0,

equations 3.12:

To perform the metrics analysis, begin with a general

relation between the physical and computational planes.

This general relation has the formt

47 (X, Z) 4.1

C 4(X,Z) 4.2
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and-serves an a mapping between one plane and the other.

Figure 4. 1 Physical Plane
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From the chain rule,

(,P ) a(X, ) , x).(Z, C) (,'z) 4.3

(,4) a (X, 4;) (x) + (Z, 4) (, z) 4.4

Since the transformation im from the phymical to the

computational planes, the derivatives (,x) and (,z) must be

written in terms of the derivatives (,f) and

(,C). Solving 4.3 and 4.4 simultaneously gives:

Cx)=J( (Z, 4) ,) )-(Z, f) (, 4) 3 4.5

(,z)uJ[ (X, f) (,C))-(X, ) (,V) 3 4.6

where the Jacobian of the transformation, J, ý.s represented by

J-l/E (X, 9) (Z, C) -(X, C) (Z, f) 3 4.7

and appears in equations 3.15 and 3.16.

Nov the general transformation of Chapter 3 can be

completed. By comparing 4.5 and 4.6 to equations 3.12 it is seen

that the required metrics in terms of the phymical plane are:

' ZC(J) 4.8
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• *-X'C(j) 4.9

* -Z'(J) 4.10

SX, f(J) 4.11

Since the physical geometry is nonuniform vhile the

computational plane remains constant, thee metrio must be

recalculated at each vertical (L) node at all streamwine (J)

locations. See Figures 4.1 and 4.2.

The final contribution to the grid transformation relates

to f ixir.g and

&C since they are used to find

derivatives in the computational domain. At each atreamwiue

station there are always the same number of points vertically,

may LNAX. Since 4 goes from 0 to 1, (Fig. 4.2).

LC = 1/(LHAX-1)

The range of Z-coordinates in the physical plane vary with shock

layer thickneus, but 4 is always mapped to the region 0

to I with equally apaced points L

apart.
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The f coordinate goes from 16 to

#Al, dependent on the start and and of the physical

problem and the transformation. Therefore:

a•M -46/(3MAX-1)

Where JNAX in the number of utreamwise stations, the initial data

station being station number 1.

Au more node points are added vertically and

horizontally, the accuracy improves according to the accuracy of

the governing finite difference equations (Chapter 5). This in

in contrast to Reference I in which the computational grid

appears to hold At and

U constant at 1.0.

It remains to calculate the metrics using 4.8 - 4.11.

One could do so numerically by taking differences. For example,

(Equ. 4.10.

- -J(ZJ.a,L-Za,L)/•t

Where J must also be found by differencing. Of course knowing

the physical grid locations at the j + I station in order to do

the differencing require. knowledge of the shock lncation. The
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shock prediction will be discussed in the chapter on boundary

conditions.

It one knows the specific correspondence between the

physical and computational planes, av in equations 4. 1 and 4.2,

the metrias may be found explicitly. For the wedge problem, the

grid transformation in given by:

L- X 4.'2

( m(1/s)sinh- (sinh(a) CZ/Z.o sait) 4.13

Equation 4.13 vas chosen to cluster the grid points in the

boundary layer'. With an a"s val:se of 3.0 for example,

approximately 40X of the grid points lie within the boundary

layer. The *s" value can be varied to give the desired grid

cluastering. Equation 4.13 can be rewritten an:

Z w (sinh(sx)/sinh(a))C[%, (x)3 4.14

Where Zoo is a function of X and hence (by 4.12), of #

also. By 4.12, 4.13 and 4.14:

Xs" I

X, ;" 0

Z,9" (8inh (i€)/xirth (a) ) I Z'. I

Z,; (s)(Zem)(cosh(s4)/sinh(s))
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where submaript SH reftre to the value at the shock end

VON. a (ZI-a-ZI)SH/Ar

From the above formulae and equations 4.8 - 4.11$

to, tap 1 and #

can be construoted at each streamvnme station and at each

'-vrtial. fode am the solution advanoem in the utreomviue

dir ction. I
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5.0 EXNITE DIFFERENCE ALQORITHM

As we have seon, the non-dimenmional 2-D PNS equations

can be written ant

F& Fas, = ES,C + H 5.1

where Fg, F., S, and H are vectors.

The new scheme is implicit and iterative which means that

the solution is moved forward in space from index j, say, to J+1

and then iterated in *pseudo time*' from n to n+1 until it

converges (Fig 5.1). The term *pseudo time" refers to the fact

that only the converged steady state solution has physical

meaning.

- - -

N

n-time index L-vertical index j-horizontal index

Figure 5.1 Index Notation
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With reference to Figure 5.1, the converged solution at

steps j and J-1 are used as the starting solution for stop J*1.

At step a÷1, the solution in then iterated until convergence. At

step J*' we havet

(Fitt + Fatt a SoC + K),LJ*&''' 5.2

Since the method in implicit, a11 vertical I.-node grid values at

the n~l level are found sivultaneously in contrast to an explicit

scheme which would find the n+1 values one at a time from the

already known n values.

The above equation is not useful since the solution at

n+l is unknown -- the n+l level must be tied to the n level. It

we assume that the solution at level n.l in close to that of the

n-th level', Taylor Series expansions in pseudo time for each

term in 5.2 gives%

FtJ** * FJ (AJ'M' 'O) 5.3

FOJ* 0" a FaJ*'eP + (AeJ. teA[*' ) 5.4

SJ*.'%* M SJ4.10 4 (+ J''.*Aq t ) 5.5

HJ#'%"# = HJ*'' + (A.aJ'*f:Iqf t ) 5.6
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Where: •:m" m qJ'I,,-I . qJI a and these

expansions are valid at each vertical node.

At# As, As# and H are called the Jacobian matrices, not

to be confumed with the transformation Jacobian (Chapter 4).

They are 5 x 5 matrices mince there are five elementa in the

state vector. The Jacobian matrices are formed by taking the

partial derivativem of the flux vectorm with respect to the state

vector. The elements of the Jacobian matrices are given in

Appendix B.

Substituting equations 5.3 - 5.6 into 5.2 give.:

+F1 J~e. + A +J-',-t~qi),#

* CP.J'*I.* e'.C[t]p

-EcSJ*.a" + MJ+.1"Aqft*9],4

+ EHJ**.n + AJ*lm,'qk*I3 5.7

The mtreamwiue derivative van given apecial treatment in

Reference 1 mo that the truncation error would be

O(Aq'* )4

instead of

O(,:qJ ")a

an in conventional PHS schemes.''- ',''1 '. It is preferable to

have temporal errors mince they vanish for the converged

solution.
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The streamwvue derivative from 5.2 becomes:

-1, :A. 1 m'.",I * (F *1' ."1 , "-F J ) / *÷0 •, L•l' '

=AaJ+l'"n"nl/4 (F/,&r+)J1.("

With this formulation of the streamwise derivative, equation 5.7

appears as:

E(At/At- A.)(• U- )

+ (A,-CM),,(c•i'÷ )Vow J'3 ,

= -IFS, + Fa,4 - 6S, - H-LJ

= GLuJ+" , say 5.8

Equations 5.8 and 5.7 are equivalent but 5.7 has been changed to

explicitly show how the streamwise differencing is performed.

Equation 5.8 is accurate to O(Aqn*' )a in pseudo

time and is conservative in the limit of convergence.

It is convenient to call the right hand side of equation

5.8 GL ''. for ease of notation. It is seen that on the right

side all values are in terms of the n-th level, which are known.

On the left, the coefficients of AqR*l are also

from the n-th level. The problem in elliptic in the

direction so central differences are used for vertical
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differencing. Upon using a central difference on the left of

5.8, the final form becomes:

(A,/&t - Ao )0*1-' (4q""'

S ((A E-ENM)L,- /(22b)) ) (6q"e ))j

"MGL J 5.9

Looking at 5.9, the block tridiagonal form begins to

appear. On the right, there is the vector G6 ÷' '. at all

vertical L nodes. On the left, there are three matrices; one at

node L, one at node LeI and the other at node L-1. The equation

solves for the vectors •qL *'•. Once

4qL.°* has been found with a block tridiagonal

solver, the new state vector can be found from:

q , , qLj÷',.~ ÷ qLj~ 1 ' 5.10

Equations 5.9 and 5. 10 do not address smoothing considerations,

which will be added in Chapter 7.
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To illustrate the block tridiagonal conatruct a bit more

clearly, set

A -[(A*-EM)/(2U)]L-a.,J+I,

C [(A,-EM)/(24)]L 4.l.J 1*, 5.11

B = (A&/14S An

Then the block tridiagonal equation appears an:

BC ,qL•a GL.a

ABC

x • 5.12

ABC . .

AB rqL-LN1- GL-LgAX-I

Boundary conditions "or the matrix operatione vill be explained

in the next Chapter.

A remaining question is how to find the right side of

5.8; namely, the derivatives:
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An mentioned earlier, the 4 derivatives are modeled by

central differencing, i.e.,

' Fe, 4 (FL•+ &-F,.6-,)J i' / M,14...'''..l)

S,• (SL 1,-St. I)÷ ' / 2 )

The streamvise derivative is a one-point backward

difference as seen in the development between 5.7 and 5.8:

Pip = (F& J ' -FiJ )L. /,U

In all such di.ferencing, the metrics are also included. In

differencing the viscous terms the viscosity coefficient is also

differenced. Viscosity in determined by Sutherland's Law in

dimensional form:s5

P= B(T 3 .1)/(T + S) 5.13

where T is dimensional temperature and

B = 7.3025 X 10-7 lbf/(1tsecR"')

S - 198.720 R for air

The L'lock tridiagonal form of equation 5.12 is solved

with a subroutine that was originally written' for an academic

subject requiring the solution of a block tridiagonal matrix made
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up of 3x3 matrices beginning at node 1. It was modi.fied here to

allow 5x5 matrices and to start at node 2.

The block tridiagonal form (5.12) in Reference I was

solved using stored forms of the inverse matrix. The scheme of

Reference 1 computes new matrices in the block tridiagonal form

only at the first iteration of each streamwvie step. The current

code computes these matrices anew for each iteration, before

solving the block tridiagonal matrix. This revised procedure does

not affect the converged solution but may change the number of

iterations required to obtain the converged solution.

The tridiagonal solution advances the solution in pseudo

time only, from level n to level n+1. Once convergence is

achieved, the solution marches from level j to J+1 by some method

of prediction. For example, either the newly converged j

solution becomes the first J+. solution, or using solutions at j

and J-1, extrapolation predicts the first solution at J+1. The

iterations take place at one streamwvse location rather than

globally over the whole field as in previous iterative PNS

schemes. 1. This, along with the separate equation of state,

maker the current acheme significantly dif±erent from past

nlgorithms.
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6.0 BOUNDARY CONDITIONS

There are three distinct boundaries for the wedge I
problem: The wedge surface, the shock wave, and the initial data

plane. Each will be covered separately.

6.1 SURFACE

Five boundary conditions are required at the wall

corresponding to the five state variables. These conditions

are:'

1) Density consistent with equation of state

2) No slip condition for u velocity: (pu) 1 a 0

3) No slip condition for w velocity: (pw), - 0

4) Specified wall temperature, T, - 1.0 for Mach 3

and T, - 3.0 for Mach 15 flcw.

5) Zero pressure derivative in the body normal

direction, (P, ) = 0

Here subscript 1 refers to a wall value and condition #5 is

justified by a boundary layer type analysia performed at thI

wall., The true nondimensional equation of state is

7p-pT - 0. However, as will be discussed

in Chapter 8, a modified equation of state in taken to be:

7p - pT + SEP,# t P,4 ] u0 6.1
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Because of condition #5, at the surface this reduces to

7p - OT + aeP,#)V =0 6.2

Where 8 is an *arbitrary* (small) parameter. For sufficiently

small S the model approximates the true equation of state if

(P,f•)mGo(1).

Equation 5.9 applied at the first point away from the

wall (L=2) results in three matrices on the left and one vector

on the right-hand side:

AA1 + Baqa + C Aq 3  C- 6.3

This vector equation represents 5 equations for the 5 state

variables. Since the subscripts refer to specific nodes,

A1 Aq. is known from the boundary conditions. It

is not part of the block tridiagonal matrix which has the form

(see Equ. 5.12):

B*• C3 6qa

Aa B3 C, . = 6.4

X
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where: B** a Be + f'A 1 )

G°,1. I,,x-1 GnL,,..- - CL.laW q,.wsa

Since Aq% = (qn*l - qfl)t is unknown

(specifically qo*'), this boundary condition can be treated

implicitly, transformed to the delta form, and combined with the

Be Aq, term.

A model for condition #5 is that the pressures are equal

at the wall and the adjacent node.

P, = P. 6.5

It follows thorefore that

4P 1-Apa

where 6p, is the fifth component of

&q. The alocity terms are also straight forward

since from conditions 2 and 3:

Fu)= A(pw), I 0 6.6

For the *T sta- "'ariable we have (from 6.2 and 6.5)

A(pT), = c'p,-ep,,#)-'i - (7p 1 ,ep 1 ,#)-

" ' •Op,t)')* - (7pa.÷pa,4)'"

* A(PT)a 6.7
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And finally,

44h (46T),/T, a (c.T)!/r, 6.8

Combining equati ons 6.5 - 6.6 givest

0

.(I t 0 6.9

I WAT). I
The elemento of the At matrix which multiply theme

components of &qj can be combined with the

elements of Be which multiply like components of

Lq., leading to B.a of equation 6.4.

The At matrix (Appendix B) in filled based on boundary

conditions 1-5. The velocity components vanish, the temperature

iu given, and the pressure at the wall is taken from the node

directly above the wall. Density is then found from the modified

state equation.

p (Wp÷eCID(PIJ ''-P, J )/Al)/Tj 6.10
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6.2 Shock Boundary Conditions

There are two parts to the shock boundary condition: The

location of the shock relative to the surface of the wedge. Zo."

and the angle the shock surface makes with the freestream flow.

The shock angle determines the state variable values

across the shock and the location of the shock is used to

equalize mass flow. Since the flow is viscous, the boundary

layer will force the shock surface outward and at the same time

the shock angle may chaLge as a function of streamwise location.

The algorithm must allow for change. in both angle and location.

The values of the state variables at the shock must be

consistent with those in the interior of the shock layer. In

other words, the shock values must be coupled with the interior

values. To preserve this coupled nature, the shock angle must be

obtainwd from points interior to the shock.

One way to do this is to solve for pressure or density at

the shock based on interior points and then use the Rankine-

Hugoniot conditions to find the shock angle. Using backward

differencing, any value at the shock can be obtained from points

inward of the shock:

fL. = m a (ft.ma-x - 2 fLlaI-a - ft. A,-a -
4 fL1aX-9) 6.11
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where LMAX in the node at the shook.

Us* 6.11 to find pa. or oSN and the Rankine-Hugoniot

conditions to find the shook angle, S. This shock angle will

therefore be consistent with state variable profiles calculated

at each iteration. Once Pa. or o,. are found

remaining variables are found from the Rankine-Hugoniot equations

and the state equation. The velocities across the shock, us. and

Vwi, are found from geometric considerations detailed in

Appendix C. On the first Ateration, before any profiles have

been calculated, either the shock pressure or deasity can be

extrapolated from upstream values with a simple Eulerian

integration. The shock values found at each iteration become the

values at the n+1 level.

The global mass conservation procedure considers a

problem separate from the shock value calculation and independent

of the coupled nature of the shock angle. The shock location

determines the maximum Z value, wlich determines the grid

distribution, which determines the metrics. To begin this

routine, the shook location must be predictej when stepping from

j to j÷1 prior to any iterations. At each iteration the ZIM

position is adjusted to equalize mass flow with freestrfam mass

flow.

The method used to predict the shock location is based on

a paper by Chausee, et al.7  His method is written for a general

three dimensional system but here reduces to:
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Ze03 Ze 4j + &.x(tanBj) 6.15

where Ax isa the mtroamwise stop size. This

prediction is used only at n-1. At further iterations, Zew

adjustments are based on overall mnes flow considerations.

The nmes flow equalization concept vas not part of

Chaueuee's scheme. It was suggested in Reference I since

Chaunweem method results in' nmes flow error* of t 2.0K.1 Bhutto

and Lewis suggest moving Zew until mans flow error* are loan than

* 0.1IX. Details of both the shock prediction and the mass flow

calculation are presented in Appendix C.

Referring back to equation 6.4, the shock boundary

concerns the CLsb~~- vector. And as in

section 6.1, the CLPSU matrix is filled using the shock values.

Unlike the wall boundary condition, &q..,.. *' is

known. The newly calculated shock values at each iteration

become q%* and the last computed shock values ore q". In this

case t4qL~aa can be formed explicitly:

The right hand side of 6.4 is then corrected tar this boundary

condition with:

GMA. aa-1 0 Ga. uN.-1 CL.uNft%(&qa. NMu " ) 6. 17
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6.3 INITIAL CONDITIONS

The initial data plane (IDP) is the starting point for

the numerical solution. Using the current nondimensionalization,

the IDP is at X-l.0. Initial values for all five state vector

components are predicted or assumed from the wall to the shock.

Initial data which together with the next j+l initial prediction

better satisfy the governing equations (Equ. 5.8) result in

faster convergence for the 'irst j+l location.

In Reference I a blunt body starting code wan used to

obtain an initial condition for a blunt cone configuration; a

starting solution for the present viscous wedge flow wan not

available. Initial conditions were based instead on inviscid

flow with refinemen s based on the addition of a boundary layer

and a mass flow calculation.

Because of this, the present initial conditions are

approximations at best for a *correct" wedge flow. However, the

approximations are believed to be reasonable based on an assumed

boundary layer that was lO of the initial local shock layer

thickness with a specified distribution from the wall to the edge

of the boundary layer. Since the mama flow must balance, the

shock location and the state variable profiles were then adjusted

to match the freestream mass flow with that of the IDP.
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An a measure of the quality of the initial data, the

right hand side of Equation 5.8 was monitored. The right hand

side is simply the governing PNS system terms written at time

level n. A converged solution corresponds to a vanishing right

hand side to some acceptable level. The magnitude of the largest

component of the right-hand side for the first iteration after

the IDP indicate= how well a consistent solution was achieved

with the initial data and the prediction at J+l. After setting

up the initial data, profiles were smoothed to blend the region

at the top of the boundary layer. Figures 6.1 and 6.2 show

typical initial data for Mach 3 and for Mach 15 flow. The figures

are only a representation since Reynolds number was varied and

therefore different initial profiles were used for different

cases.
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7.0 SMOOTHING

The final form of the finite different equations are

given by equation 5.9 with the right-hand side an in 5.8. For

simplicity, this can be written as:

ET]6Jq.L"÷ = -RHS]" 7.1

where ETJ0 is the block triCdiagonal matrix and CRHSJ- is the

right-hand side vector. The equation as it stands solves for

qR"•' and as yet there is no smoothing.

As stated in Reference I and by Schiff and Steger,a

central differencing produces oscillatory behavior which must be

damped. Since Equation 6.1 is second order accurate in the

4 direction due to the central differe.:,cing, it is

possible to add a term of O(&4) as a

smoothing parameter without formally sefecting the second order

accuracy.'

Reference 1 chooses the form of this smoothing parameter

to be:

wCf(qJ 3 )](q)'t .2

where f is an appropriate vector and w is tome

constant.
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Bhutta and Levis' chose the vector f to be:

1f * %rAaq,;C" (Aeq, C- le(Mq,W),C - A q, 3 7.3

and 0 0. or 1.0 for no smoothing or smoothing.

If 7.2 in added to 5.1 we obtain:

F,• ,f Fe, 6S,• + H

+ wf(qJ" 1 (44•) 7.4

Substituting for f(qJ÷*) (and usIng the disc-a.X3ion of Chapter 5)

resulta in:

CF, * At (-(%q, 4(A4)a /43J-,

'CF- * A. (-• •')/4JJ*',C

.rH ÷ A.( , , ' ") 4 ! ',

7.5

Now, define the quantity!

=f#I) QJ~l - *1

7.6

an tkhat (QJ' - qJ 1)f " 0 (A)* 7.7

or, to second order accuracy:
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qJ- W J* , )'/4

7.8

Consider a Taylor Series expansion of F, (Q) around q:

IFI(Q) F 1 (q) + F 1 ,q (Q-q) + F,,qq (Q-q)8/2 +

aF& (q) + As(t,1 , 9(U 8

Similar construc~ts can be obtained for Fe, S and H and in terms

of an intermediate solution Q and Equation 7.5 can be vritten as:

F1 Q)J1 + F,(0)J,4 = GES(Q)J+÷ 3,C + H(QJ'.) ÷ FJ

7.9

The intermediate sclution, 6, in related to q by Equation 7.8.

Comparing tquatý.nn 7.9 to the development in Chapter 5, we can

see i'hat 7.9 in terip of Q can be handled lik& 5.8 in terms of q.

In other words, the govorninU equýtion can nov be written as

CAZ.1 *l ÷ B * CZ•Q"'I l 3 GIIJ',J

7.10

there A, B,C. a,.e the tridiagonal matric.s, or

T]AG -' ERHSV' 7.11
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This in the equation to be coded and solved. Once

J0 .Ia.- is calculated, QJ... would be found

from'

QJ+11.n4 . Qj*-,n + Qj.1,..1 7.12

and once GJ*1. 1÷• in found, the real solution qi *,.. would be

found from 7.8 as:'

qLJ L•t" * Cc.•(QL, *QL-O)/
4 + (1-w/2)QG]J+'''÷n

7.13

When solving the block tridiagonal form of 7.10 or 7.11,

the solution is in terms of the vectors Agnol.

The solution at level n, which is used to calculate the right

hand mide of 7.10, in in terms of the true solution, q. The only

term that in known is L9", the solution of the

tridlagonal matrix.

L96*1 must be changed to

Aqn"÷ before it can be added to q". In other

words, A 1' in smoothed to bqa÷l

which is then added to q" to obtain the upgraded solution

qN*I a qft + bq1%+i 7.14
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This in very similar to 7.12 but with Q in place of q. 19

equation 7.13 at level n+1 is subtracted from the same equation

at level n, the following in obtained.

,6q.J It~l WW .* + 6 k 1)+ - + /

7.15

bq"*1 is now in terms of bdo"

which in the actual result of the tridiagonal solution for us* in

Equation 7. 14.

Equation 7.15 in uued from nodes L a 2 to LHAX-1. Care

is needed at nodes 2 end LMAX-1. At node LMAX-1#

ADL.41 is &Q at the shock. At

node 2, AOL,, is AQ at the wall

and both must be accounted for.

At node 2, as was shown in Chapter 6:

Apt IW(PT)a /T I

ACPu)1  0

At node 2 then, Equation 7.15 becomes: (For c~omponents 4, 5)I59
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~q~Jtt.R 4
I UCQt/4' +C1-t/4)~L]2. V I 7.16

For component 1. Ag- in the fourth component of

&go, divided by wall temperature. For components

2 and 3, 7. 15 remains the same.

At node LHAX-1, an was also presented in Chapter 6:

L* MX* = LNSZ3* 1 
- QLA"7.17

This in known at the shock and substituted into 7. 15 during

smoothing.

The calculated &ON' in the tridiagonal

algorithm becomes the basis of convergence. If all

4'* approach zero, the solution at tkhe current

J.1 node is converging properly. The criteria used here wan that

all AQ- must be loes than or equal to 0.000)

before moving an to the next utreauiwise node.
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8.0 STABILITY AND EIQENVALUE ANALYSIS

Since this method in implicit, it in expected that for

reasonable step sizes:

Ax or At

the finite difference algorithm will be uncolditionaliy stable.

In Reference 1, the step size variations were said to be related

to changes in grids, shock propagation accuracy and solution

convergence rates'. No detailed algorithm was given. However,

the stability considerations to be discussed here are not related

to the discrete diffP-!ncing but to the actual physical nature of

the problem, i.e., has the current formulation eliminated the

elliptic (subsonic) region of tho domain?

Recall Equation 5.7:

*F, g Atj i'tl"uq1+a], C

÷ FF J*I.R + AtJOI-14&q V*1],4

UE[SJ*'.n * MJ*1.'b:6 "÷' ],

+ CHJ'*0- + A* o 1,.#4k*1]

8.1

Where At, Ag, M, and A. can theoretically change in both the

f and 4 directions. Now assune, as in

Reference 1, that these coeificients are frozen. This is

reasonable if changes from n to n~l are not large. The above

equation is now:
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a& *~ +

-6m~- as bq 0

8. 2

where a& , aa, mW, and a. are frozen.

An a further simplification,' examine the viscid and

inviucid limits separately. Equation 8.2 in too difficult to

analyze an in. The inviucid and viscous limits are simpler and

may be analyzed separately.

8.1 INVISCID LIMIT

The inviucld limit of 8.2 can be written am

as~I 4q 9 a6 * K (bq, 9, ) = 0

The stability analysis of the system of equation. now requires

that the inverse of a, be formed and multiplied throughout

giving:

Lq.+ al as Aq,~ + atI K 0 8.3

The eigenvaluou o~f the at-'a* matrix nowr determine the marching

stability of equation 8.3.' Even though S.3 is a much simplified

veruion of 5.9, it iu a form suitable to mathematical analysis.

If 8.3 insutable then the full equation may also be stable; if

8.3 in unstable, the full equation certainly will be unstable.
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I

An a further simplification, assume a rectangular grid

for this analymim no that the metrics become

-0 1um

jl I
The state veco•r in unchanged.

;n:rodu:: th: follow:ng di:Terential equation of state:I

Po- -T ÷ BCPf+ P 0) 0.4

Thi3 becomes a generalized fifth equation in the system am van

discussed in Chapter 3. Without 8.4 the F, and Fa vectors become

Pu

FaU + p

Fj = •u +p

(T/( (-1) +V* /2)Pu

0
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Fe Awe * p

(T/ (7-1) +Vt !2),aw

0

The matrices at and a. are formed from the partial derivatives of

the flux vectors with respect to the state vector (Appendix 3).

An eigenvalue determination requires the inverse of as

and multiplication by that inverse. However, the last row of as

consists of zeros since the last component of Fa to zero so the

inverse of at in undefined. To circumvent this, Bhutta and Levis

invented Equation 8.4.

Using 8.4, the fifth component of F, and Fe becomes Op

(Equations 3.16) and the last row of at and am becomes

0 0 0 0 G

Nov the inverse of at can be formed and the eigenvalues of ut-asa

can be found. Although Reference 1 indicates that 8.4 was not

used in the actual computer code, a subsequent paper by Shutta

and Levis'& does show solutions for different values of 6 and

seems to indicato equation 8.4 was incauded. This explaias the

inclusion of this equation of state. The intent was to
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investigate different values of 0 and its possible effect on the

solution.

The eigenvalueu of at-'aa (based on 9)0 but for the limit I
approaching 0) area

It vIu, w/u, w/u, v/u I
Reference I incorrectly indioates zero in place of unity. The

eigenvalues of the 4 x 4 matrices, i.e. without the equation of

state as the fifth equation of the formal system, are:&

V/U, V/u, uV * a(ue +we - aa)sa*/(ua - aa) 8.6

Th. essential difference, of course, is that in 8.5 the

eigenvalues are always real so that hyperbolic/marching behavior

is indicated. In subsonic regions, the second net of eigenvalues

(Eqn. 8.6) become imaginary and elliptic behavior in indicated.

AssumAing for the moment the analysis of Reference I is

correct, the new scheme appears to be stable for marching. In

contrast to previous PNS mchemes which make pressure assumptions

in the rubsonic eublayer to eliminate the instability, the new

method requires none. In other words, even though the same

physical. problm in solved by beth methods, mathematical

roformulation seems to grant stability to the new scheme without
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any amsumptions in the B-O.O limit, for vhitch the 8.6 eigenvalues

are to be expected.

8.2 VISCOUS LIMIT

In the viscous limit, equation 8.2 becoment

asZ, 4,t- Gm•q,• * K -0 6. 7

Using the same S rationale an in the invisoid limit, the viscous

eigenvalues are':

0, 0, 0, 3Ep/CProua), tOEA/a3pu) a.a

In previous PNS schemes the viscous eigenvalues

ares

0, 4ja/(3o~u), q 3 , 04

Where

. 4 = )h/(2,3(ua-aa))((u+D/(uE))±C(u÷D/(uE))*-4D/E2' •)

D=uG -aa E=Prp/k

and: k - coefficient of thermal. conductivity.

The discussion concerning marching stability in rimilar to

thaiý for the inviscid limit. The only difference in that
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positive viscous eigenvalues require positive u-vvlocity

components. This says that reversed flow is unstable, in

agreement with accepted practice.

8.3 DISCUSSION AND ANALYSIS

To this point the results and eigenvalues may seem

surprising given that mathematical reformulation seems to remove

the marching instability wven 0=0. The analysis was first

presented in Reference 1 and the results of equation 8.5 check

mathematically. Whether or not such an analysis was justified

will be examined here using a small perturbation and linear

stability analysis.

Stability for the mixed differential/algebraic system of

Equation 8.3 iu unclear sinice 3-O implies that the necessary

matrix operations for eigenvalues sre undefined. When 8 is

included to form a totally differential system, the 6 approaching

0 limit dces not yield the correct eigenvalues (Eqn 8.6). There

is a paradox involving the parameter 0, presumably related to the

singular perturbation form of the modified state equation. This

reasoninj leads to the following analysis.
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8. 3. ± •.all Peitgrbation AnalVuis'

Consider a simple model probJ3iý,, which appeired in.

Reference 11:

U- vy 0

+ 2v,;. + wv "0 .8.9

ewx aau-v

Equation 8.9 Joosely approximates and is representative of the

governing PNS equationu with a modif.ed (6>O) equation of state.

If F - 0 8.9 in equivalent to

u' - Vy =0

v% + (ag-l)uv + 2,1Y 0 8.10

which can be written an

qw+ Aq, 0

where q = ru,V] T and

(aa2-1) 2

* Suggeoted by Dr. Judson R. Baron and Dr. Saul S. Abarbanel
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The eigenralues of A are:

1 2l • 12(- an) I 8.11!

and are imaginary 11 ."a > 2.

S'The eigenvectors are:

e1 ' Cl, -xi ]T 1 1a 3 Cli .• ]

If O is not =ero, the eigenvalues of 8.9 become

%, a = 0, 1I (2)1 0 8.12

and the eigenvectors are:

ej=El, O, 1]T &a 1.1C,- 0,]T e3 e =I1, ->.a,O]3

The wigenvalues are real and have no wtime like" constraint.

Similarly, the eigenvalues of Equation a.5 were unconditionally

ea.'. al•ter Ahutta and Levis used their 8 not equal to zero

astumptlon to allow matrix inversion and took the limit as 8

approached 0oO.

The preceding discussion confirms the Bhutta and Lewis

algebra leading to 8.5. The essential point is that the

eigenvalues appear to be independent of E or e even though 6 or 8

cannot apriori bo set equal to zero to find the eigenvalueu.

What are the proper eigenvalues as e or 8 approach zero in view

of the differing results of 8.11 and 8.12 (or 8.5 and 8.6)? In

it not necessarily correct on physical grounds to assume the

eigenvalues when 6 - 0 and 6 approaches zero must be identical?
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Consider the implications of assuming a regular

perturbation based on 6. First, ei±fferentiate.theusecond

equation of 8.9 v. r. t. x ar,,, thc third w. r.t y. Eliminate wx. v to

get:

ut - Vy '"=O

Vz z - Uv ÷z 2'v % (auv wv /)E =0

Then with w, from the necond equation and uv, from the first

equation of 8. 9:

UK t

Ev,, - vy.v + 2vv,, + aguy + v, -uv2, + 2V.. Ci 8.13

Assume M regular per.turbation, say-

U ZUO " EU1  + E'Ua s +..

v =vo EvI + leave + ... 8. J.4

and examine the eigenvalue basis for different orders of 6.

"Substituting 8. 14 into 8.13 and collecting terms,

according to like powe,•s.of e given:

0(OE ud, - vOy = 0 8. 15a

va,, - u.n v÷ 2vova ÷ uoa = 0
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O(6') Us - Vsvj 0

vi- us.v ÷ 2v ÷ mU,. Y. (va x -Vv•' 2 V% x v 8. 15b

0" OE) Ux,,- Vey 0

Vex - Ult ! 2"-.,ev ÷ ue. (Vt x x-vwv÷2V+v& ) 8. 15c

and so on.

Thus, in gen&;-al, for 0(EG-, "each set of equations can be

S~ Written on : r

Llqm ) '•R(vu-,)

here the• L operator in identical for the equations of all

orrdors.

The point is that if the introduction of C allows a

regular perturbation as in 8.14, the eigenvalues should be

Identicel for all orders of 6, including the zeroeth order. The

Bhutta and Lewis eigenvalues are not identical for either the

model. (E a 0,0(1) problem 8.9 or the actual (0 = 0,((2) problem

5.9.

It must be concluded that the Bhutta and Lewis

eigenvalues are inconsistent. The normal subsonic sublayer

instability remains in the PNS equations. Solutions constructed

without any modifying assumptions to this sublayer should break

down due to this instability.
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8.3.2 Linear Stability Analysis*

Bhutta and Lewis erred in their inviucid stability

analysis since in Equation 8.3 they did not consider the term

K(,&q, 4r, ), which is also a

function of the state vector, must also be included in the

stability analysis.

Rewrite equation 8.3 am

Aq. + Bqy7 a Cq

where q - Cp, u,w, T, p 3 . Using a linear Fourier

stability technique, met

q aqe A k * I Y

Then

det(kA + 1B -iC) =0

Here the A and B matrices are the partial derivativem of the X

and Z flux vectors with respect to the state vector above

(Appendix B). The C matrix in the partial derivative of the

state equation vector, H, with respect to q above.

*Suggemted by Dr. Michael B. Gilzs
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On evaluating the determinant it is found that

either

k (i/e)(ua-aa)/ull/

which in unstable if M<I

k C Cuwl t ((uvl)m - (aa - ua)ala22/aJ/(aa -us)

I Cuw ± a(ua + va _ a (-k-Us I
which are unstable if M<1

The conclusion from both this and the previous section

8.3.1 is that the Bhutta and Levis method does retain the weak

elliptic region in the subsonic sublayer. Unless appropriate

measures are taken, their method should break down at some

downstream location.

I
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9.0 o LSUIm

Based an the conclusions of Chapter 8, the present scheme

shu4ud prove to be unstable at some point downstream. However,

the itarative and added equation aspects of the scheme make it so

much different than previous PHS formulations.,, 13,14,15 that

the instabiJity may manifest itself in different ways.

In order to test the performance of the present code over

the wedge geometry, cases were run at Mach numbers 3 and 15 and

Reynolds numbers ranging from approximately 4xlO3 to IxIO' at the

IOP. Freestream data corresponding to 80,000 feet altitude was

used when dimensional temperature was required in the Sutherland

law, and to define a typical reference length from Reynolds

number. The Mach number, Reynolds number and Prandtl number

completely define the air flow, irrespective of altitude and are

the only relevant inputs. A Prandtl number of 0.72 was used.

The results of the numerical tests are summarized in

Tables 9.1, 9.2, and 9.3. These tables represent a progression

in grid clustering. The results in Table 9.1 were carried out on

an evenly spaced 50 point grid with the first node point 2.0. of

the shock layer thickness from the wall. Table 9.2 used a

clustered 50 point grid with the first node point 0.6% from the

wall. Table 9.3 used a clustered 100 point grid with the first

node point 0.3% from the wall. The clustering parameter, s, cl
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Chapter 4, van 1.0x101-e Xor Table 9.1 and 3.0 for Tables 9.2 and

9.3.

The progression from smooth to clustered grids was

selected so as to obtain general performance ch~racteristics of

the scheme. Certain cases were chosen frum Table 9.1 and rerun

on tighter grids to obtain the results of Table 9.2. In this

manner, similar cases were comparable with respect to their

performance covering general characteristics over the entire

shock layer to very specific detail within the boundary layer and

in particular within the subsonic sublayer.
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TAABLI.-I SMOOTH GfSI') RESULTS

ALL VARIABLES RECORDED AT INITIAL DATA PLANE

CASE MACH RE.7 L. 68 #STEPS FINAL
NO. ZeM X

1 3 1.6x10' 0.04 0.03 0.C13 >150 5.5
2 3 2.3x10' U.10 0.03 0.021 18 1.54
3 3 4.3x103 0.21 0.03 0.045 10 1.30

4 3. 9.7x10, 0.05 0.03 0.017 70 3.21
5 15 3.8xI0 0.06 0.03 0.0003 )..100 4.00

6 3 1. 6xI0 0.04 0. 001 0. 013 1? 1. 017
7 3 I. 6x108 0.04 0. Or) 0.013 47,,90.01 1.047
8 3 I.6x10" 0.04 . 001 0.013 6•, -uO..10 1.069

9 3 1.6x105  0.04 C.06 0.013 82 5.92
10 15 6.oxIO 0.04 0.06 0.0003 >100 7.00

11 3 1.6x10O 0.04 0.10 0.013 50 6.00
12 3 1.6x10b 0.02 0.10 0.013 51 6.10

13 15 1.lx10' 0.03 0.03 0.0002 >160 5.80
14 15 8.9xi0" 0.10 0.03 0.00C 15 1.42
15 15 1.1xlO" 0.25 0.03 0.00128 3 1.09

TABLE 9.2 50 POINT CLUSTERED GRID RE3ULTS

16 3 1.6x108 0.04 0.03 0.006 I0 2.30
17 3 2.3x10 0.10 0.03 0.019 8 1.24
18 3 4.3x103 0.21 0•03 0.05 1 1.03

19 3 4.8x10" 0,07 0.01 0.0125 30 1.30
20 3 1.5x1O0 0.04 0.01 0.006 30 1.30
21 3 2.5x10 0.01 0.01 0.004 >100 2.00
22 15 6.0x1O0 0.04 0.001 0.00017 12 1.012
23 !.5 6.Ox106 0.04 0.0001 0.00017 >55 1.0055

TABLE 9.3 100 POINT CLUSTERED GRID RSUgLT

24 15 6.Ox106 0.04 0.0001 0.00015 55 1.0055
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An the grids become increasingly clustered noas the wall,

the apparent beight oa the aubsonic I.ayer changes slightly for

equivalent bcuncary layer thiacnesses. This in due, o. course,

to correspondlng noce location changes near the wall as the

number of nodoe increaaes. Cases 1, 5, 10, 13, 21, and 23 all

'could havec antinued for a larger number ol stapm than indicated.

That does not mean that an eventual break down is avoidable. For

exampl&, came groups (1, 2 and 3) and (13, 14 and 15) show the

resulting behavior for increasing boundary layer thickness with a

constant step size. Cases 1 and 13 were concluded at a

suffliiently large X such that the Laformatloaz gained showed a

trend.

Figure 9.1 shows a piot of the number of marching steps

before breaking dovrw versus the height of the initial subsonic

layer for Mach = 3 and a stepsize uf 0.03. Figure 9.2 is a

similar plot !or Mach number 15 and stepsize of 0.03. The saw,

results are evident in cases 16 through 21. A dramatic rise

occurs in the number of possible steps at constant stepsize as

the subsonic layer decreases. The exponential like behavior as

the subsonic layer shrinks suggests an unlimited number of steps

would be achievable for an invincid flow.

Cases 9 and jO provide related information. All other

things being equal, th? soluticn can be marched farther

downstream at high Mach numbers because the subunnic layer is

smaller. This is apparent in cases 4 and 5 as well.
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It is interesting to compare thv Iclutiona for Mach 3 and

Mach 15 in cases I and 13. Figures 9.3 and 9.4 show the profiles

of state variable* and Mach number across the shock layer at 150

steps for Mach 3 and 15 respectively. Notice how sbnrp the

tranmition ;.one between the boundary layer and the inviucid

external luyer has become when ccmpared to the initial data

(Figs. 6.1 and 6.2).

Figures 9.5 and 9.6 show the right hand mire of the

governing equations (Eq. 5.8) versus vertical node. In both

cases the energy equation show= the largest departure in

magnitude from zero, followed by the k-momentum equation. Recall

that the right hand side should approach zero in the limit of

convergence at each step. A nonvaninhing r.Lght hand value at any

node indicates the extent to which the governing equations are

not being satisfied at that node. Typically it was found that

the right hand side was of 0(1) for the first ithration of the

first streamwise stop after the IDP and became smaller proceeding

in the stramwvse direction until the scheme broke down. The

largest values remain within the boundary layer and are caused

primarily by an inconsistent met of initial conditions.

Figures 9.7 and 9.8 show the shock surface and wall

pressure for the two cases. The inviscid shock has been added

for reference. The large jump in wall pressure could be

attributable to errors in the initial pressure. Finally, Figures
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9.5 and 9.10 are enlargements of the boundary layer regions for

the tra cases. In both canmo the reversed density gradient

should be noted and in Figare 9.9 note that the o

gradient to leowening and eventually reversed flow must be

antialoated.

In fact, it was found that indopondent of the break down

location, the *heme unually broke down in a similbr var. Figures

9.11 through 9.17 trace the develrpment of came 4 for selected

downstream locations (X a 1.12, 1.30, 1.90, 2.80, 3.10). Notice

particularly the behavior of ou and p.

At stop 30, Figure 9.13, the density has a sharp gradient and the

pu variable has lees of a gradient near the wall.

Steps 60 and 70 show the u-velocity approaching separated fluw.

Figures 9.X! and 9.17 show the right hand side values (Equ. 5.8)

for iteps 60 and 70 after '%-hy have converged. Notice that the

magnitudes in 7igure 9.15 =how that the governing equations are

being uatislied while thosein Figure 9.17 indicate that the

soluticn is beginning to break down. In the same manner all

cases but one which become unstable do ao ny converging to

separated flow. 7igure 9.17a details the boundary layer at the

onset of reversed V.ov for Came 20. The largo density spike is

characteristic of the sclution Lpproaching meparation. The

governing equations remain satisfied until the brcak down ia

imminent.
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Figure 9. 18 shown the distribution of pressure across the

shook layer i,.r came 9, which also convvrges to separated flow.

The profiles are plottod at steop 2, 4, 8, 16, 32 and 64 down the

wedge (X-I.12. 1.24, 1.48, 1.96, 2.92, 4.84). Figure 9.18a in a

blowup of 9.18. The profile at step 64 (X n 4.84) in approaching

the pressure profile of Figure 9.3 which had gone 150 steps with

a slightly higber Reynolds number. Thim seems to *how that for

nearly identical initial conditicns, the scheme predicts

colaiatent mclutio. a indep.ndont of the two different stresmwiie

ateolizeu used. ("-0.03 in Figure 9.3 and

x=-.906 in Figure 9.18).

Another interesting phenomenon im observed with an

urmtable &x. Consider came 6. This Is the only

mase that did not break down due to flow separatioL. Figures

S.19 and 9.19a tuhow that pu is rot. tending toward a

decreasing gradient. It ia also interestinj to .ate that the

errors are at or below the sonic line, which is shown for

reference. A posmiblrt reason for this is suggested ic Chapter

10. Figure 9.20 shows the growing magnitudes of the right hand

side of the governing equations (Eq. 5.6) for case 6.

Finally, consider case 24 of Table 9.3. Recall that this

result was obtained on the most clustered, 100 point, grid.

Previous PNS schemes8,'1 3. have documented the phenomonon of

departure solutions. Departure behavior is found in PNS codes

that do not include a pressure assumption and is characterized by
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an exponential drop in wall pressure associated with the subsonic

ellipticity. Figure 9.21 shows the wall pressure distribution

for case 24 and Figure 9.22 shows a u-velocity component profile

for two downstream X locations. Both figures are consistent with

previously demonstrated departure behavior. , '-3. including the

rapid development of the pressure drop. Figure 9.23 shows the

right hand side distrib'ltion from equation 5.8 and indicates that

the largest errors appear in the energy equation. This again is

consistent with departure behavior', I2,15. Figure 9.24 displays

the lower portion of the shock layer at departure. Note the

1a-ge negative gradient in Pw. Compare this with

Figures 9.25 and 9.26, which are from case 23. The only

difference between the two cases is the grid clustering. They

Are displayed at the same downstream location, X=1.0055. Despite

this, case 24 indicates departure while case 23 does not. Note

particularly that the i-cgat..ve pw gradient exists in

',igure 9.25. But the pressure and energy behave quite

differently than those in Figure 9.24. This is consistent with

and ar.-ars ta validate the claim of Reference 15 which states

thiit mesh spacing and stepsize must be of O(Re-31') or less in

order to pick up departure behavior.

The indications from cases i-5 and 9-23 is that even when

classic dcparture behavior is not evident, the instability

manifests itself by converging to £ jarated flo•. Figure 9.27

snowt che right hand side distribution from equaation 5.8 oX case

23. 01 importance is tha-. even though departure behavior I.&
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suppressed errors do grow in the energy equation, which is

conristent with case 24.

Figure 9. 28 pro-v~ideo a last comnparison. Pressure

distribution profiles in the lover part of the shock layer are

shown at dilferent X locations during departure. Notice that as

the solution marches downstream a pressure disturbance moves

outward away from the surface in the shock layer. This may be

compared with the behavior in Figure 9. 17, which was run at Mach

3 and also exhibits an outward moving pressure wave. Figure 9. 17

represent. a somewhat more stable solution since as the solution

marches downstream, the pressure tends towards constancy and is

consistent with known wedge flow. Pressure in Figure 9.28, on

the other hand, moves away from constancy but the underlyingIinstability in both cases possibly induces simi~ar behavior.

The cases shown have been selected because they provide a

representative characterization of the behavior of the current

scheme. They appear to imply that the scheme is un~stable, that

it is uanstable due to departure-behavior, and even when classic

departure behavior is not evident due to grid sizing or step

size, the underlying instability causes convergence to separated5flow.
The results are not exhaustive but they do serve to

outline the per~formance of the current algorithm. Because of the

iterative natu~re of this particular algorithm (Chap. 5) the
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classical PNS pressure modeling could not be included. Several

of the previous sublayer assumptions were mentioned in Chapter I

and it would have been informative to use similar sublayer

assumptions in the current scheme, hoping to achieve a stable

algorithm.
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10.0 NU KJ

The Rhutta-Lewoi Algorithm (Ref. 1) behaves in an

expected way for PNS jahe.,s -that do not make specific sublayer

assumptions. Of particular relevance to this work in reaching

thism conclusion are References 13, 14, and 15. The latter

specifically address the role of PUS modeling and related

questions of marching, departure behavior end stability for P3S

equations. They particularly d6icusm in some depth the ue of

the streauvwie step sixe to overcome weak ellipticity. The

present analysis uses step size an a way to characterize the

behavior of the Shutta-Lewis' approach.

Th* results of Chapter 9 indicate that the algorithm

converges to and breaks down by approaching a separated flow

condition. This in in agreement with the results of the

sta&3ility analyses of Chapter 8. Exponential departure behavior

may not he appmrent unless the grid and stepsize are sufficiently

amall, but the departure behavior iz manifested by convergence to

separated flow.

Iecall from Chapter 5 that the tridiagonal algorithm

procedure is associated with psueoo-temporal steps (iterations)

rather than space. Therefore the stability analyses of

References 13, 14 and 15 which involve implicit space steps are

not applicable. However, it is reasonable to assume that the
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current iterative approach amounts to taking the same step size

repeatedly and step size doea then characterize the behavior.

A minimum streamvw.e step size in related to the height

oa the subsonic sublayer.1.I 4. t The relation developed in

Reference 13 ist

X/6 6 1/

where 6. is the thicknomp of the subsonic layer. The larger the

elliptic zone, the more restriotive on accuracy the above

condition beoomemst. This explains the results of Came 6. Also,

it is implicit that stable solutions are more easily achieved

with high speed flows in view of their relatively wmaller

subsonic layers.

This behavior in consistent with the findings described

in Chapter 9. The algorithm will march downstream when certain

conditions are met. Only if the subsonic layer is sufficiently

small, e.g. as in the 4Z or 5X boundary layer cases of Tables 9.1

and 9.2, is stability evident. Larger boundary layers can be

marched with higher Mach numbers because the subsonic layer

remains small. This agrees with References 13 and 14. In fact,

when this condition is met, a rather large step size of 0.06 was

used successfully. Smaller step sizes of order 10-3 or 10-l also

work and step sizes of this order have been used by

others.''',' 1* . £ U It must be concluded that the Bhutta-Levis

algorithm (Ref. 1) behave. in the same manner as was to be

expected for PHS schemes without sublayer assumptions.
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It should be noted that the hypersonic mimilarity

paramet:e

nM/(Re)'"•

was the bsaiu here for melecting specific Reynolds numbers

(Chapt.:. 9). At Hach numbers 3 or 15, a match of the hyperuonic

similarity parameter to that of Shutta and Lewis' original paper

(Rof. 1) implies a boundary layer thickness exceeding 20X of the

local shock layer thickness. According to the aformentioned

stability analysis,1' this should *Everely reduce the allowable

step size. Indeed, the current research failed to march low

Reynolds number, viscous flows with large boundary layers any

appreciable distances downstream. Bhutta and Lewis, however,

developed the current algorithm to solve low Reynolds number

flown and were apparently able to march largr distances

downstream.

One portion of the Bhutta and Levis algorithm which the

current work did not duplicate was variable step size. In

Reference 1, results indicate that the step size begins with

0(10-0) and ends with 0(1). Other documented parameters of the

Bhutta and Levis algorithm have been duplicated and tested and

have been shown to not ensure marching stability. Since the

current work agrees with past references on the importance of

streanwise step size, it may be that variable step size enabled

the instabilities to be supremsed. This is consistent with the

fact that successful marching wan indicated with high Reynolds
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number flows where the boundary layer and subsonic layer

thicknemsem do not grow appreciably with downstream distance. As

the boundary layer and subsonic layer grow in a viscous flow, the

step size apparently must increase to maintain stability, an

implied in Reference 1.

Nevertheless, the scheme ham been shown to be unstable.

Therefore, in order tc march successfully, some parameter or

parameters in this scheme muat' be adjusted to allow for marching

stability. Unfortunately, th parameters which allow marching

stability were not discussed in Reference I and no reference was

made to the characteristic instability of the scheme.

The role of the differential modification of the equation

of state is also interesting. Recall that the modified equation

of state:

-/ +B9(P,f P,~ ooaT

vas used to replace the true equation of state. For most

calculations B was set identically equal to zero; in certain

cases, B was allowed to vary. In Reference 1, Bhutta and Levis

indicate that B was not used for actual numerical cases, but in

Reference 11 they present solutions with BIO-0' and 10-' and

conclude that such magnitudes have negligible effect. The

current study also showed no influence to be present with B

chosen to be a small number.
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Howverr, for larger theta, (cases 7 and 8) way *aO.O01 or

0.1, the performance was actually improved in the sense that

marching continued farther to larger X4... It should be noted

that improvement was noted only for high Reynolds number and

small boundary layer cames; namely, the thin mubsonic mublayer

came. Appreciably viscous flown were unchanged.

10.1 AREAS FOR FUTURE RESEARCH

Three suggestions for possiblo ±ither research into the

algorithm include the use of a mublayer assumption, a nonuniform

stepsize and more consistent initial conditions. The scheme

should be explored with appropriate pressure assumptions inserted

during the derivation of the block tridiagonal form. This will

allow investigation of the performance of this scheme with the

classical sublayer assumption.

As mentioned earlier, the algorithm of Bhutta and Lewis

uses a variable step size based on several factors. In the very

viscous cases where the stable step size regime in small,13

perhaps a correctly calculated step size would provide a more

satisfactory marching performance. As the boundary layer and

subsonic layers grow in the streamwine direction, the step size

can grow accordingly. This in evidenced in Reference 1, but

there was no clearly stated methodology to indicate how the step

atze wan calculated or how it varied.
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Figure 10.1I shown the constraint schematically. As the

subsonic layor increases from level I to 2, the minimum step size

also increases. Assuming a maximum step size for a given level

of accuracy, there iu a finite step size window which decreases

an the subsonic height increases until there is no stable step

size available.

Obtaining a better ini~tial condition could expand on the

results of this study. Shutta and Lewi.u used a starting code

whereas this work uses only an estimate for initial conditions.

Indications found during computer runs for Chapter 9 showed that

initial conditions which better satisfy the governing equations

may allow the solution to march farther, all other factors being

equal. The computer runs also showed that the initial profiles

for low and high Mach numbers are not necessarily similar.

The initial conditions used in this work are a compromise

between Mach numbers 3 and 15. Different initial conditions at

each Mach number would have satisfied the governing equations

more completely but this was not deemed to be crucial. As an

illustration, return to Table 9. 1, case 10. The initial

conditions (Fig. 6.2) provided for a slightly nonlinear profile

slope from the wall to the top of the boundary layer. When this

was changed to a linear slope, Case 10 was ru~n for 200 steps at

&~x=0. 06 to a final X position of 13. 0. The

results are shown in Figures 10.2 through 10.5. Judging from the
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small right hand aide magnitudes of Figure 10.4, the solution was

still satisfying the& governing equations and would have marched

farther. A more consistent met of initial conditions would not

change the stability characteristics of the scheme but they would

remove an extra source of error, which would aid in marching the

solution downstream.
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APPENDIX A

EQUATION TRANSFORMATION DERIVATION

1.30



Moet of the basic transformation from a rectangular to a

general coordinate system was performed in Chapter 3. The

transformed equations are 3.13a and 3.14. The final step is to

transform the individual components of the vectors in the

governing equations.

Comparing 3.4, 3.13a, and 3.14 we see that:

F, - faEi * #.Gi A.I

Fe * EKi * &Gi

Substituting for Ei and G0 above, the following forms result for

F, and Fat

p,(fh u*#. vw)

pu(t# u.#f w) .#a P

F, .IIJ av(fiurfv).f.P

(T/(7"-1) ÷Va/2)on(f. u*tz v)

Ao2

p( ; u*. w )

Au(&.u÷Cv) + tp

Fa * /j Pv(C~u+4R) +*&

(T/(7-1)÷V4/2)P(&. uf wv)

A. 
3
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If the modified differential state equation is used, the

final component of F, and Fe will be Op. The l/J factor in added

to preserve the strong conservation law form. It in differenced

with the other components of the vector which preserves the

conservation property. Note that in Reference I the

contravariant velocitiems

(fa uef~aw) and (& u+&w)

were printed incorrectly.

The last vector to be transformed is the viacoum vector

since the vector N is algebraic and in not transformed. The

viscous vector is slightly more complicated than Ft and Fe

because it ocntains X and Z derivatives which must also be

transformed. From Equations 3.4, 3.13a, and 3.14 again:

S = &Ev + COv

where Gv was seen in equation 3.4 and

0

EV Taxs

Th avo* a b a e - qn

0

The derivation will be carried out component by component.
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The first component oi S is zero. The second component

isar

vhich i• expanded anta

)A& (4u,, I- 2w, g)/3 + & (v,i * u, a

Theme XZ derivatives must also be transformed to the

0 , ; system.

Using 3.12 the above expansion is transformed to:

P([4(fxuf* &u,0)/3 - A. 4

2 (R v, f & v, 4w)/31 +

Eta v,. * v, ÷*#u, * #9-u,;)C

Follovlng the PUS assumptions, all atreamvise viscous

derivatives are dropped from A.4 leaving,

(/J) [No u, 4 + (Mi au, 4 + MR Nw,)/3] A.5

S~where

MR a a 41 16

The third component:

4'TI a * 1 'TI aIi done in the same manner, resulting in:

(Pt/J)CNvw,4 + (MNzuC + Mz*2 w,)/3] A.6

133

I



where

Ha, - 40

The fourth component is I
S(u llm a * W TI. - q 3 )e÷6 (u¶ 3l. * w" a q1

where

q. a -k(Tp.) q* a -k(T,. )

The final form of the entire viscous vector in given bys

0

Mutt * (",u.u,9 *H%,w,0/3]

So P/J CNew,C * (Maiu,C * Haaw,C)/36

CM. (T, C;/(Pr(-) )7 uu, C*ww, C)
(Hi it, uu, C+M% a wv, C*Mz it ( wu, C*uv, 4;) ) /3 ]10

In Reference 1, the first two of the 1/3 coefficients of S were

incorrectly printed ma 1/2.
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APPENDIX E

JACOBIAN MATRICES
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After the coordinate transformation, F1, F., S, and H are given

by 3.15 ,3. 16 and Appendix A. The state vector after the same

transformation is

q u 1/ J ICp,u, pv,pT, pIT B.I

The Jacobian matrices are formed by the following partial

derivatives:

A* - Hq A, a Fjq As - Faq M - S,q B.2

For example, the first row, second column of Matrix At is the

partial derivative of the first component of F, with respect to

the second component of q (Eq. B.1). The fourth row, fourth

column of matrix Aa in the partial derivative of the fourth

component of Fa with respect to the fourth component of q (Eq.

B.1). Each component of q is treated as one term when taking

derivatives. They are not broken down into primitive variables.

Following are the four Jacobian matrices using the modified

equation of state.
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000 00

000 00

A* J 000 00

000 00

0 0 0 -1 7

0 9, 92 0 0

-uU, 2'x +#'z w I 2 u 0 f'i

A, -vex, w ' ;u+29& v 0 #,

T, T.o +t uv Ta '#.uw U,/(7-1) 0

0 0 0 0 a

where

Ul, = fxu + 92 v

T, = -U, (T/(7-1) + Vt)

To = x(T/C'(-1)+(3uawv")/2)

T3= -z (T/(7-1).(ua÷3va)/2)

0 0x Cm o 0

-uUO 26 4.v Cw u 0 41

Ae -.wU, Cv Cm u.2z v 0 Cm

T4 To +.. uv T, +4p uw Ut/('7-l) 0

0 0 0 0 0

where

U, a *u + 4. v

T4 = -Us (T/ (7-1) + V)
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.To m (T/(Cy-1)+(3u0w") /2)

To a C (T/(7-1) +(ua+3wa )/2)

0 0 0 0 0

SDI 'xDe -SD3  -aD3 0 0

M -jP/J Do +acxD, -DaD3  -D 0 0

(ND, +i3DO -SDI -uD" -cDa -mDL -ND 3  0
+aD& +2aD7 }

L 0 0 0 0 0

vhere

B = No+Mxx/3

a Mzx13

cr - Mo÷Mz /3

N a Mo/(Pr(7-l))

The following are all partial derivatives contained in M:

D, - (uJ/P),

Da = (J/P),4

D,6 (TJ/P),C

Do - (uaJ/P),

Da = (vaJ/P),

-a (uvJ/P),C
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APPENDIX C

MISCELLANEOUS DERIVATIONS

MASS FLOW, Ue, We, SHOCK PREDICTION
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The velocities across the shock are determined from

geometrical relationships. Figure C.1 illustrates the

nondimensional velocity components in the wedge coordinate

system. The shockc angle, and therefore the velocities across the

shock, are functions of downstream position.

Figure C.1 Shock Velocity Geometry

E tarr1 (Wo/Us) + n~/2 - 8 + * C.1

and

qs. a qacouCAJ

M(Use + WOR)lia (con&,) C. 2
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Equations C. I and C. 2 are two equations in the tvo

unknovns, Ug and W@. Solving simultaneously given:

AA a I + tanO(B - n/2 - 0, + cos-I (tan/ /(oa tanh B) 'I)

U& a w, (I/tan'S + 1/#.R)/AA]''a C. 3

We U&(AA) C. 4

MASS FLOW

The geometric relationships for mass flow are shown in

Figure C.2. The freestream normal distance, Zo', must be found in

terms of the wedge Z coordinate.

Shock

Z'O sh

Figure C.2 Mass Flow Geometry
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For mass flow to balance, it must satisfy:

CgaUZ)a 11ul
Jo 0 udz C.5

After nondimensionalizing and finding the relationship

for Ze, Equation C.5 becomes:

Ma(Z.,.cou(St) + XsinCB,))
J* Paudz C.6

To diucratize the integral. in C.6, the vertical nodes (L)

of Chap~ter 5 are used. The inte*gral in then:

Ek. (Pu)'6z C. 7

where the summation in carried out over the vertical nodes.

The value of the mass flow across the shock CEqu. C.7)

normalized with respect to the freeutream mass flow CEqu. C.6)

should be near 1.0. If not, the shock position is moved up or

down to equalize the two mass flown. Ref er~nce 1. suggests that a

difference of O.1X is sufficient.

SHOCK PREDICTION

From the reference by Chausee et al.?, the shock location

in two dimensions can be predicted from location j to J+1.

Differences in coordinate systems have been accounted for. The

re, *hc. location is given by:

where J: gCs

which in two dimensions reduces to:

-ia)l - MI/i tanS C.9I4



(Fig C.). Then Equation C.8 beacomem

ZJ'• ZA + tan8,x

This in *hovn geomn•trially in Figure C.3

ZJ*j

M.0t M. z

Moo0 H Ax

Figure C.3 Shock Prediction
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APPENDIX D

COMPUTER CODE
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BEG

INIT

m
< N

MSTOP OUTPUT

y

N
< DID NOT

ITERMAX
CONVERGE

GRIDGEN

ASSEMBLE 
STOP

B5S0LV

FINDSTATE FIND

G MAxn4m
RESIDUAL

ERRORRESIDU&L y TOO
TOO LARGE
IG

N

N RESIDUAL
NVERGED

y
MOVE J+1
VALUES FINDSTATE
TO j

Figure D.1 Flowchart
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The code to titled PARABNS.FOR and uses the file

PARABNS.INC. Both are written in FORTRAN and have been run on a

Digital VAX 11/780 and a MiaroVAX.

SUBROUTINES

INIT - Taken input of the boundary layer thickness and

makes estimates for the initial profiles. Uses maseflov to reline

initial estimate for shock angle. Inviscid shock angle and

Rankine-Hugoniot relations provide initial estimates at the

shock.

GRIDGEN - If the time level is at the first iteration,

the routine predicts the J.1.n-l state vector based on past state

vectors. Also predicts new shock location. If the time level is

greater than one, mass floa in used to refine the shock location.

Interior value= of density are used to predict the shock density

and therefore the shook angle. Other shock values are found from

the Rankine-Hugoniot relations. Metrics and XZ positions are

computed.

ASSEMBLE - Assembles the individual Jacobian matrices

into block tridiagonal form. It also performs the tridiagonal

boundary conditions. Two subroutines are called:

A) FINDG - Calculates the right hand side

vector (Equ. 5.8).

B) BUILDNATRIX - Fills the individual Jacobian
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matricemo Ae, At, A* and N

B5SOLV - 5 x 5 Block tridiagonal solver

FINDSTATE - Smoothes the Aga'* terms and

updates the state vector with the newly smoothed solution.

OUTPUT - Creates 5 output fileo:

A) State Variable Profiles

B) Convergence History

C) Governing Equation Errors

D) Shook Surface and Wall Pressure

E) Streamwise Profiler of Selected State

Variables

A copy of the computer code is on file with Professor Judgaon

R. Baron, Massachusetts Institue of Technology, Room

33-217, (617) 253-4329.
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